Let #u(x)=2x-1# and #w(x)=x^2#, how do you find u(w(-4)) and w(u(-4))?

1 Answer
Dec 20, 2015

u(w(-4))=31 w(u(-4))=81

Explanation:

w(u(-4))

#u(x)=2x−1#
#u(-4)=2(-4)−1# (plug in -4)
#u(-4)=-8−1# (multiply)
#u(-4)=-9# (add)
#w(x)=x^2#
#w(u(-4))=(-9)^2# (plug u(-4)=-9 into w(x))
#w(u(-4))=81# (square)

u(w(-4))

#w(x)=x^2#
#w(-4)=(-4)^2# (plug in -4)
#w(-4)=16# (square)
#u(x)=2x−1#
#u(w(-4))=2(16)−1# (plug w(-4)=16 into u(x))
#u(w(-4))=32−1# (multiply)
#u(w(-4))=31# (add)

hope this helps