How do I find the derivative of #ln sqrt(x^2-4)#?

1 Answer
Dec 25, 2015

We'll need the chain rule, which states that #(dy)/(dx)=(dy)/(du)(du)/(dv)(dv)/(dx)#

Explanation:

Renaming #u=sqrt(v)# and #v=x^2-4#, let's do it step-by-step:

#(dy)/(du)=1/u#

#(du)/(dv)=1/(2sqrt(v))#

#(dv)/(dx)=2x#

Aggregating:

#(dy)/(dx)=(2x)/(2usqrt(v))#

Substituting #u# and then #v# afterwards:

#(dy)/(dx)=(2x)/(2(sqrt(x^2-4))(sqrt(x^2-4)))=(cancel(2)x)/(cancel(2)(x^2-4))#

#(dy)/(dx)=x/(x^2-4)#