What are the extrema of #f(x) = (3x) / (x² - 1)#?
1 Answer
Jan 2, 2016
The function contains no extrema.
Explanation:
Find
#f'(x)=((x^2-1)d/dx(3x)-3xd/dx(x^2-1))/(x^2-1)^2#
#=>(3(x^2-1)-3x(2x))/(x^2-1)^2#
#=>(-3(x^2+1))/(x^2-1)^2#
Find the turning points of the function. These occur when the derivative of the function equals
#-3(x^2+1)=0#
#x^2+1=0#
#x^2=-1#
Thus, the function has no extrema.
graph{(3x)/(x^2-1) [-25.66, 25.66, -12.83, 12.83]}