What is the derivative of #x^((1/5)(lnx))#?

1 Answer

#2/5*x^((1/5*ln x-1))* ln x#

Explanation:

Let #y = x^((1/5*ln x))# then take logarithm of both sides of the equation

#ln y = ln x^((1/5*ln x))#

#ln y = (1/5 ln x )*( ln x)#

#ln y = 1/5*(ln x)^2#

using implicit differentiation

#1/y * y' = 1/5* 2* ln x*1/x#

then solve for #y'#

#y' = (2y)/(5x) ln x#

replace #y# with the equivalent #x^((1/5*ln x))#

#y' = (2x^((1/5*ln x)))/(5x) ln x#

then simplification

#y' = 2/5*x^((1/5*ln x-1))* ln x#