What are the first and second derivatives of # g(x) =ln(arctanx)-arctan(lnx)#?
1 Answer
We'll need chain rule for both terms.
- Chain rule:
Explanation:
Also, let's just remember the rule to differentiate
-
#(ln(u))'=1/u# -
#(arctanu)'=(u')/(1+u^2)#
Therefore, using the chain rule for each term... In the first, we'll rename
#(dg(x))/(dx)=1/u(1/(1+x^2))-(v')/(1+v^2)(1/x)#
Substituting
#(dg(x))/(dx)=1/(arctanx)(1/(1+x^2))-(1/x)/(1+ln^2x)#
#(dg(x))/(dx)=1/(arctanx(1+x^2))-1/(x(1+ln^2x))#
#(dg(x))/(dx)=1/(x^2arctanx+arctanx)-1/(x+xln^2x)#
The second derivative will demand some product rule:
#(dg(x)^2)/(d^2x)=(0-(2xarctanx+x^2(1/(1+x^2))+1/(1+x^2)))/(x^2arctanx+arctanx)^2-(0-(1+ln^2x+cancel(x)(2lnx)/cancel(x)))/(x+xln^2x)^2#
#(dg(x)^2)/(d^2x)=-(2xarctanx+cancel((x^2+1)/(x^2+1)))/(x^2arctanx+arctanx)^2+(1+ln^2x+2lnx)/(x+xln^2x)^2#
Simplifying and rearranging:
#(dg(x)^2)/(d^2x)=(1+lnx)^2/(x^2(ln^2x+1))-(2xarctanx+1)/((x^2+1)arctan^2x)#