Given: #color(brown)( (3x+2)/(3x-2) = (4x-7)/(4x+7)#
#color(blue)("'Getting rid' of the denominators")#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("Multiply both sides by "color(blue)(3x-2))#
#color(brown)( (3x+2)/(3x-2)color(blue)(xx(3x-2))= (4x-7)/(4x+7)color(blue)(xx(3x-2))#
#color(brown)( (3x+2)xx color(blue)((3x-2))/((3x-2))=((4x-7)color(blue)((3x-2)))/(4x+7))#
but #(3x-2)/(3x-2)# is another way of writing 1 giving:
#(3x+2) xx 1= ((4x-7)(3x-2))/(4x+7)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("Multiply both sides by "color(blue)(4x+7))#
#color(brown)((3x+2) color(blue)(xx(4x+7))= ((4x-7)(3x-2))/(4x+7)color(blue)(xx(4x+7))#
#(3x+2)(4x+7)=(4x-7)(3x-2)xx((4x+7))/((4x+7))#
But# (4x+7)/(4x+7)# is another way of writing 1 giving:
#color(brown)((3x+2)color(blue)((4x+7))=(4x-7)color(black)((3x-2)))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("Multiply out the brackets")#
#color(brown)(3xcolor(blue)((4x+7))+2color(blue)((4x+7)) =4x color(black)((3x-2))-7color(black)((3x-2))#
#12x^2+21x+8x+14=12x^2-8x-21x+14 #
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("Collecting like terms")#
#(12x^2-12x^2)+(21x+8x+8x+21x)=14-14 #
#0x^2 +58x=0#
#color(green)(x=0)#