How do you differentiate #f(x)= ( x + 1 )/ ( csc x )# using the quotient rule?
1 Answer
Jan 15, 2016
Explanation:
The quotient rule states that
#d/dx[(g(x))/(h(x))]=(g'(x)h(x)-h'(x)g(x))/[g(x)]^2#
Applying this to the function at hand, we see that
#f'(x)=(cscxd/dx[x+1]-(x+1)d/dx[cscx])/csc^2x#
Which gives
#f'(x)=((cscx)(1)-(x+1)(-cscxcotx))/csc^2x#
Simplify.
#f'(x)=(cscx(1+(x+1)cotx))/csc^2x#
#f'(x)=((x+1)cotx+1)/cscx#