How do you differentiate #f(x) = ln(sqrt(arcsin(e^(2-x^2)) ) # using the chain rule?
1 Answer
Explanation:
First, recognize that this can be written as
#f(x)=1/2ln(arcsin(e^(2-x^2)))#
since the square root is really a power of
The first issue is the natural logarithm. But, according to the chain rule,
#f'(x)=1/2(d/dx[arcsin(e^(2-x^2))])/arcsin(e^(2-x^2))#
The next issue lies in differentiating the arcsine function. The following rule can be used:
#f'(x)=1/(2arcsin(e^(2-x^2)))*(d/dx[e^(2-x^2)])/sqrt(1-(e^(2-x^2))^2)#
To differentiate the
#f'(x)=1/(2arcsin(e^(2-x^2)))*(d/dx[2-x^2]e^(2-x^2))/sqrt(1-e^(4-2x^2))#
#f'(x)=1/(2arcsin(e^(2-x^2)))*(-2xe^(2-x^2))/sqrt(1-e^(4-2x^2))#
Nasty simplification from here on out, now that the calculus is over...
#f'(x)=(-xe^(2-x^2))/(arcsin(e^(2-x^2))sqrt(1-e^(4-2x^2))#
#f'(x)=((-xe^2)/(e^(x^2)))/(arcsin(e^(2-x^2))sqrt(1-e^4/e^(2x^2)))#
#f'(x)=((-xe^2)/(e^(x^2)))/(arcsin(e^(2-x^2))sqrt((e^(2x^2)-e^4)/e^(2x^2)))#
#f'(x)=((-xe^2)/(e^(x^2)))/(arcsin(e^(2-x^2))(1/e^(x^2))sqrt(e^(2x^2)-e^4))#
#f'(x)=(-xe^2)/(arcsin(e^(2-x^2))sqrt(e^(2x^2)-e^4))#