If #f(x)= tan8 x # and #g(x) = e^(-3x ) #, how do you differentiate #f(g(x)) # using the chain rule?
1 Answer
Jan 20, 2016
<
Explanation:
#f(g(x)) = f( e^(-3x) )= tan(8e^(-3x)) # using 'chain rule' to differentiate.
# f'(g(x)) = sec^2(8e^(-3x)) d/dx (8e^(-3x)) #
# = sec^2(8e^(-3x)) . 8e^(-3x) d/dx (-3x) #
# = sec^2(8e^(-3x)) .8e^(-3x) . (- 3 ) #
# rArr f'(g(x)) = -24 e^(-3x). sec^2(8e^(-3x)) #