How do you graph #x^2 + y^2 + 4x - 4y - 1 = 0#?
1 Answer
Jan 22, 2016
This is the equation of a circle centre
Explanation:
#0 = x^2+y^2+4x-4y-1#
#= (x^2+4x+4)+(y^2-4y+4)-9#
#= (x+2)^2+(y-2)^2-3^2#
Add
#(x-(-2))^2+(y-2)^2 = 3^2#
This is in the form:
#(x-h)^2 + (y-k)^2 = r^2#
the standard form of the equation of a circle with centre
graph{(x^2+y^2+4x-4y-1)((x+2)^2+(y-2)^2-0.01)=0 [-12.33, 7.67, -3.08, 6.92]}