What is the sum of a 7–term geometric series if the first term is –11, the last term is –171,875, and the common ratio is –5?

1 Answer
Jan 31, 2016

#-143231#

Explanation:

The general term of a geometric series can be described by the formula:

#a_n = ar^(n-1)#

where the initial term is #a# and common ratio #r#.

Then we find:

#(1-r) sum_(n=1)^N a_n#

#= sum_(n=1)^N a r^(n-1) - r sum_(n=1)^N a r^(n-1)#

#= a + color(red)(cancel(color(black)(sum_(n=2)^N a r^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N a r^(n-1)))) - ar^N#

#= a(1-r^N)#

So dividing both ends by #(1-r)# we find:

#sum_(n=1)^N a_n = (a(1-r^N))/(1-r)#

In our example, #N=7#, #a=-11# and #r=-5#

So:

#sum_(n=1)^7 (-11)(-5)^(n-1)#

#=((-11)(1-(-5)^7))/(1-(-5))#

#=((-11)(1-(-78125)))/6#

#=((-11)(78126))/6#

#=-11*13021#

#=-143231#