How do you convert #-x^2+2xy-y^2=9# into polar form?

1 Answer
Feb 9, 2016

# 9/(sin2theta-1) #

Explanation:

using the formulae which link Cartesian to Polar coordinates

# • r^2 = x^2 + y^2 #
#• x = rcostheta #
# • y = rsintheta #

rewrite as
# -x^2 - y^2 + 2xy = 9 #

so -# (x^2 +y^2) + 2xy = 9 #

hence # - r^2 + 2( rcostheta.rsintheta) =9 #

and # -r^2 + 2r^2 costhetasintheta =9 #

common factor: # r^2 (2costhetasintheta-1 )= 9 #

(Note that : # sin2theta = 2costhetasintheta #)

hence #r^2(sin2theta - 1 ) = 9#

# rArr r^2 = 9/(sin2theta -1) #