How do you find the slant asymptote of #y=sqrt(x^2+4x) #?
1 Answer
Feb 24, 2016
Notice that
#y = x+2#
and
#y = -x-2#
Explanation:
Let
As a Real valued function, this has domain
#sqrt(x^2+4x)#
#=sqrt(x^2+4x+4-4)#
#=sqrt((x+2)^2-4)#
#=sqrt((x+2)^2(1 - 4/((x+2)^2))#
#=abs(x+2) sqrt(1-4/(x+2)^2)#
As
This results in two slant asymptotes:
#y = x+2# as#x->+oo#
and
#y = -x-2# as#x->-oo#
graph{(y-sqrt(x^2+4x))(y - x - 2)(y + x + 2) = 0 [-11.01, 8.99, -1.08, 8.92]}