How do you balance the equation: #(A)FeSO_4+(B)KMnO+(C)H_2SO_4 -> (D)Fe_2(SO_4)_3+(E)K_2SO_4+(F)MnSO_4+(G)H_2O# ?
1 Answer
#10FeSO_4+2KMnO+8H_2SO_4 -> 5Fe_2(SO_4)_3+K_2SO_4+2MnSO_4+8H_2O#
Explanation:
Let's eliminate unknowns backwards, starting with
From the equations for
#G=C#
#F=B#
#E=1/2 B#
#D=1/2 A#
Substituting these in the remaining equations we get:
#S: A+C=3(1/2 A)+(1/2 B)+B = 3/2A + 3/2B#
#O: 4A+4B+4C = 12 (1/2 A)+4 (1/2 B)+4B+C = 6A + 6B+C#
Subtracting
#C=1/2A+3/2B#
Substitute this in our equation for
#4A+4B+4(1/2A+3/2B) = 6A+6B+(1/2A+3/2B)#
That is:
#6A+10B = 13/2A+15/2B#
Multiplying both sides by
#12A+20B = 13A+15B#
Subtract
#5B=A#
So if we put
#A=5B=10#
#B=2#
#C=1/2A+3/2B=5+3=8#
#D=1/2A = 5#
#E=1/2B = 1#
#F=B=2#
#G=C=8#
So:
#10FeSO_4+2KMnO+8H_2SO_4 -> 5Fe_2(SO_4)_3+K_2SO_4+2MnSO_4+8H_2O#