How do you verify #(1 + csc x)(sec x - tan x) = cot x#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Jarni Renz Mar 5, 2016 #RHS=cotx# Explanation: RHS: #(1 + cscx)(secx-tanx)# #(1 + 1/sinx)(1/cosx-sinx/cosx)# #((sinx + 1)/sinx)((1-sinx)/cosx)# #(cancelsinx-sin^2x+1-cancelsinx)/(sinxcosx)# #(1-sin^2x)/(sinxcosx)# #(cancel(cos^2x)^cosx)/(sinxcancelcosx)# #cosx/sinx# #cotx#=#LHS# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 11694 views around the world You can reuse this answer Creative Commons License