How do you find the first and second derivatives of #f(z)= (z^2+1)/(sqrt (z))# using the quotient rule?
1 Answer
Explanation:
The quotient rule:
#frac{"d"}{"d"z}(u/v) = frac{vfrac{"d"u}{"d"z}-ufrac{"d"v}{"d"z}}{v^2}#
In this question
#u = z^2 + 1#
#frac{"d"u}{"d"z} = 2z#
#v = sqrtz#
#frac{"d"v}{"d"z} = 1/{2sqrtz}#
So,
#frac{"d"}{"d"z}((z^2 + 1)/sqrtz) = frac{vfrac{"d"u}{"d"z}-ufrac{"d"v}{"d"z}}{v^2}#
#= frac{sqrtz(2z)-(z^2 + 1)1/{2sqrtz}}{sqrtz^2}#
#= frac{3z^2 - 1}{2zsqrtz}#
Similarly, to find the second derivative, we have to change
#u = 3z^2 - 1#
#frac{"d"u}{"d"z} = 6z#
#v = 2zsqrtz#
#frac{"d"v}{"d"z} = 3sqrtz#
So,
#frac{"d"^2}{"d"z^2}((z^2 + 1)/sqrtz) = frac{"d"}{"d"z}(frac{"d"}{"d"z}((z^2 + 1)/sqrtz))#
#= frac{"d"}{"d"z}(frac{3z^2 - 1}{2zsqrtz})#
#= frac{vfrac{"d"u}{"d"z}-ufrac{"d"v}{"d"z}}{v^2}#
#= frac{(2zsqrtz)(6z)-(3z^2 - 1)(3sqrtz)}{(2zsqrtz)^2}#
#= frac{12z^2sqrtz-(9z^2sqrtz - 3sqrtz)}{4z^3}#
#= frac{3sqrtz (z^2+1)}{4z^3}#