How do you find the determinant of #((2, 1, 0, 0), (1, 2, 1, 0), (0, 1, 2, 1), (0, 0, 1, 2))#?
1 Answer
Transform into an upper triangular matrix then take the product of the diagnonal to find:
#abs((2, 1, 0, 0),(1, 2, 1, 0),(0, 1, 2, 1),(0, 0, 1, 2)) = 5#
Explanation:
The determinant is unchanged by adding any multiple of one row to another row, or column to another column.
Starting with:
#((2, 1, 0, 0),(1, 2, 1, 0),(0, 1, 2, 1),(0, 0, 1, 2))#
Subtract
#((2, 1, 0, 0),(0, 3/2, 1, 0),(0, 1, 2, 1),(0, 0, 1, 2))#
Subtract
#((2, 1, 0, 0),(0, 3/2, 1, 0),(0, 0, 4/3, 1),(0, 0, 1, 2))#
Subtract
#((2, 1, 0, 0),(0, 3/2, 1, 0),(0, 0, 4/3, 1),(0, 0, 0, 5/4))#
The determinant of an upper triangular matrix is the product of the diagonal, so:
#abs((2, 1, 0, 0),(0, 3/2, 1, 0),(0, 0, 4/3, 1),(0, 0, 0, 5/4)) = color(red)(cancel(color(black)(2)))*color(blue)(cancel(color(black)(3)))/color(red)(cancel(color(black)(2)))*color(green)(cancel(color(black)(4)))/color(blue)(cancel(color(black)(3)))*5/color(green)(cancel(color(black)(4))) = 5#