How do you convert #r = -3sec(theta)# to rectangular form?

1 Answer
Mar 22, 2016

#x=-3# The graph is a vertical line.

Explanation:

#sec(theta) = 1/cos(theta)#

And cosine in #("adjacent")/("hypotenuse")#

So #sec(theta) =1/cos(theta)=("hypotenuse")/("adjacent")#

But hypotenuse# = sqrt(x^2+y^2) " and adjacent "= x#

so #sec(theta)=sqrt(x^2+y^2)/x #

So we now have:#" "r=-3sqrt(x^2+y^2)/x #

But #" "r=sqrt(x^2+y^2)# giving:

#" "sqrt(x^2+y^2) =-3sqrt(x^2+y^2)/x #

Divide both sides by #sqrt(x^2+y^2)# to get

#1=-3/x #

Multiply by #x# to finish:

#x=-3#

Alternatively

Use #x=rcostheta# and #sectheta = 1/costheta#

So we have

#r=-3sectheta#

#r = (-3)/costheta#

#rcostheta = -3#

#x=-3#