How can you memorize exponent rules?
1 Answer
See explanation...
Explanation:
Start with positive integer exponents:
#a^n = overbrace(a xx a xx ... xx a)^"n times"#
Then you can see:
#a^m xx a^n = overbrace(a xx a xx ... xx a)^"m times" xx overbrace(a xx a xx ... xx a)^"n times"#
#=overbrace(a xx a xx ... xx a)^"m + n times" = a^(m+n)#
This is useful when you multiply two numbers that are expressed in scientific notation. For example:
#(1.2 xx 10^3) xx (2.4 xx 10^6)#
#=(1.2 xx 2.4) xx (10^3 xx 10^6)#
#=2.88 xx 10^(3+6)#
#=2.88 xx 10^9#
For negative exponents, first note that if
#a^(-n) = 1/underbrace(a xx a xx ... xx a)_"n times"#
and we find:
#a^n xx a^(-n) = overbrace(a xx a xx ... xx a)^"n times" xx 1/underbrace(a xx a xx ... xx a)_"n times"#
#=overbrace(a xx a xx ... xx a)^"n times"/underbrace(a xx a xx ... xx a)_"n times" = 1#
We find that the rule:
The next level of complexity is:
#(a^m)^n = overbrace(a^m xx a^m xx .. xx a^m)^"n times" = a^(mn)#
For example:
#(2^2)^3 = 4^3 = 64#
Finally note that
That is:
#a^(m^n) = a^((m^n))#
For example:
#2^(2^3) = 2^8 = 256#