How do you simplify #sin(x-y)/cos(x+y)-tan(x+y)# to trigonometric functions of x and y?
1 Answer
Explanation:
Using
#color(blue)" Addition formulae " # • sin( A ± B) = sinAcosB ± cosAsinB
• cos (A ± B ) = cosAcosB ∓ sinAsinB [ note change in signs ]
and trig.identity :
# tanx = (sinx)/(cosx) # using identity for tanx :
#rArr (sin(x-y))/(cos(x+y)) - (sin(x+y))/(cos(x+y)) # common denominator of cos(x+y) , can write as single fraction
#rArr (sin(x-y) - sin(x+y))/(cos(x+y)) # Using 'Addition formulae' to expand numerator/denominator
#color(blue)" expanding numerator "# sinxcosy - cosxsiny - (sinxcosy +cosxsiny )
= sinxcosy - cosxsiny - sinxcosy - cosxsiny = -2cosxsiny
#color(red)" expanding denominator " # cos(x+y) = cosxcosy - sinxsiny
Replace expansions into original fraction
#rArr (-2cosxsiny)/(cosxcosy -sinxsiny) xx(-1)/(-1)#
# = (2cosxsiny)/(sinxsiny -cosxcosy) #