How do you solve #cos2x + sinx = 0# over the interval 0 to 2pi?
1 Answer
Change
Explanation:
Double angle formula for cosine
#cos(2x) -= 1 - 2 sin^2(x)#
Replace the
#cos(2x) + sin(x) = 1 - 2 sin^2(x) + sin(x)#
#= 0#
Solve the quadratic by factorizing
# -2 sin^2(x) + sin(x) + 1 = 0#
#(1 + 2sin(x))(1 - sin(x)) = 0#
Therefore, either
#sin(x) = 1# or#sin(x) = -1/2#
For
#x = pi + pi/6 = (7pi)/6# or
#x = 2pi - pi/6 = (13pi)/6#
Putting together all the answers,
Refer to the
graph{cos(2x)+sin(x) [-10, 10, -5, 5]}