What is the instantaneous rate of change of #f(x)=ln(4x^2-6) # at #x=-2 #?
1 Answer
Apr 5, 2016
Explanation:
This is the value of f'(-2)
differentiate using the
#color(blue)" chain rule " #
#d/dx [f(g(x)) ] = f'(g(x)) . g'(x) #
#"-----------------------------------------------------------------"# f(g(x))
# = ln(4x^2 - 6) rArr f'(g(x)) = 1/(4x^2 - 6) # and g(x)
#=4x^2 - 6 rArr g'(x) = 8x #
#"----------------------------------------------------------------"#
#rArr f'(x) = 1/(4x^2 - 6) xx 8x = (8x)/(4x^2 - 6)#
#rArr f'(-2) = (-16)/(16-6) = -8/5 #