How do you evaluate #-sin((13pi)/12)#?

1 Answer
Apr 7, 2016

#sqrt(2 - sqrt3)/2#

Explanation:

Trig unit circle and property of supplementary arc-->
#- sin ((13pi)/12) = - sin (pi/12 + pi) = sin (pi/12)#
Evaluate #sin (pi/12)# by applying the trig identity:
#cos 2a = 1 - 2sin^2 a#
#cos (pi/6) = sqrt3/2 = 1 - 2sin^2 (pi/12)#
#2sin^2 (pi/12) = 1 - sqrt3/2 = (2 - sqrt3)/2#
#sin^2 (pi/12) = (2 - sqrt3)/4#
#sin (pi/12) = +- sqrt(2 - sqrt3)/2# -->
Since #sin (pi/12)# is positive, therefor:
#- sin ((13pi)/12) = sin (pi/12) = sqrt(2 - sqrt3)/2#