How do you differentiate #f(x)=1/(cot(x)) # using the chain rule?
1 Answer
Apr 7, 2016
Explanation:
differentiate using the
#color(blue)" chain rule " #
#d/dx [ f(g(x)) ] = f'(g(x) . g'(x) # and the standard derivative D(cotx) =
#- cosec^2 x #
#"---------------------------------------------------------------------------"#
rewrite f(x) as f(x)# = (cotx)^-1 # f(g(x)) =
#(cotx)^-1 rArr f'(g(x)) = -1(cotx)^-2 # and g(x) =
# cotx rArr g'(x) = -cosec^2 x #
#rArr f'(x) = -(cotx)^-2 . - cosec^2 x = (cosec^2 x)/(cot^2 x) #