How do you integrate #(x^2+x)/((x+2)(x-1)^2)# using partial fractions?

1 Answer
Apr 8, 2016

#int (x^2+x)/((x+2)(x-1)^2) dx =2/9 ln abs(x+2) + 7/9 ln abs(x-1) - 2/(3(x-1)) + C#

Explanation:

Since the denominator has already been factored for us, we can tell that we're looking for a partial fraction decomposition of the form:

#(x^2+x)/((x+2)(x-1)^2)#

#=A/(x+2)+B/(x-1)+C/(x-1)^2#

#=(A(x-1)^2+B(x+2)(x-1)+C(x+2))/((x+2)(x-1)^2)#

#=((A+B)x^2+(-2A+B+C)x+(A-2B+2C))/((x+2)(x-1)^2)#

Equating coefficients we get the following system of linear equations:

#{ (A+B=1), (-2A+B+C=1), (A-2B+2C=0) :}#

Adding all three equations together, we find:

#3C = 2#

So #color(blue)(C=2/3)#

Subtracting the second equation from the first, we have:

#3A-C = 0#

Hence #color(blue)(A = 2/9)#

Then from the first equation we find #color(blue)(B=7/9)#

So:

#(x^2+x)/((x+2)(x-1)^2)=2/(9(x+2))+7/(9(x-1))+2/(3(x-1)^2)#

Hence:

#int (x^2+x)/((x+2)(x-1)^2) dx#

#=int 2/(9(x+2))+7/(9(x-1))+2/(3(x-1)^2) dx#

#=2/9 ln abs(x+2) + 7/9 ln abs(x-1) - 2/(3(x-1)) + C#