How do you find the exact value of #sin ((7pi)/12)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer P dilip_k Apr 9, 2016 #sin(7pi/12)=sin(pi/3+pi/4)# #=sin(pi/3)cos( pi/4)+cos(pi/3)sin(pi/4)# #=sqrt3/2xx1/sqrt2+1/2xx1/sqrt2=(sqrt3+1)/(2sqrt2)# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 39630 views around the world You can reuse this answer Creative Commons License