How do you integrate #int 1/(n(n+2))# using partial fractions?
1 Answer
#int 1/(n(n+2)) dn = 1/2 ln abs(n) - 1/2 ln abs(n+2) + C#
Explanation:
Since we have already been given a factorisation of the denominator into distinct linear factors, we are looking for a partical fraction decomposition of the form:
#1/(n(n+2)) = A/n + B/(n+2)#
#=(A(n+2)+Bn)/(n(n+2))#
#=((A+B)n+2A)/(n(n+2))#
Equating coefficients we find:
#{(A+B=0), (2A=1) :}#
Hence:
#{(A=1/2),(B=-1/2):}#
So:
#int 1/(n(n+2)) dn = int (1/(2n) - 1/(2(n+2))) dn = 1/2 ln abs(n) - 1/2 ln abs(n+2) + C#