Question #cab60

2 Answers
Apr 15, 2016

Recall the following identities:

#1. color(red)(secx=1/cosx)#

#2. color(darkorange)(tanx=sinx/cosx)#

#3. color(blue)(cotx=cosx/sinx)#

#4. color(purple)(sin^2x+cos^2x=1)#

Given the following identity, start the proof by working on the left side.

#secx/cosx-tanx/cotx=1#

Left side:

#(color(red)(1/cosx))/cosx-(color(darkorange)(sinx/cosx))/(color(blue)(cosx/sinx))#

#=1/cosx*1/cosx-sinx/cosx*sinx/cosx#

#=1/cos^2x-sin^2x/cos^2x#

#=(color(purple)(1-sin^2x))/cos^2x#

#=cos^2x/cos^2x#

#=color(green)(|bar(ul(color(white)(a/a)1color(white)(a/a)|)))#

#:.#, left side#=#right side.

Apr 15, 2016

#secx/cosx -tan x/cot x#

#=sec^2 x - tan^2 x#

#=1#

Explanation:

LHS: #secx/cosx -tan x/cot x#

#=secx xx 1/cosx - tan x xx 1/cot x#

#=secx xx secx - tan x xx tan x#

#=sec^2 x - tan^2 x#

#=1#