What is the instantaneous rate of change of #f(x)=1/(x^3-2x+5 )# at #x=0 #?

1 Answer
Apr 15, 2016

#2/25 #

Explanation:

This is just the value of the derivative at x = 0.

differentiate using the #color(blue)" chain rule "#

#d/dx [ f(g(x)) ] = f'(g(x)) . g'(x) #

Rewrite # 1/(x^3 - 2x + 5) = (x^3 - 2x + 5)^-1 #
#"------------------------------------------------------"#

f(g(x)) = #(x^3-2x+5)^-1 #

#rArr f'(g(x)) = -1(x^3-2x+5)^-2 #

and g(x) = #x^3-2x+5 rArr g'(x) = 3x^2-2 #
#"----------------------------------------------------------"#
now substitute these values into the derivative

#rArr f'(x) = -(x^3-2x+5)^-2 xx (3x^2-2)#

# = (-(3x^2-2))/(x^3-2x+5)^2 #

and f'(0)# =( -(-2))/(5)^2 = 2/25 #