How do you implicitly differentiate #18=(y-x)ln(xy)#?

1 Answer

#y'=(y/x-1-ln(xy))/((x)/y-1-ln(xy))#

Explanation:

Start from the given equation and differentiate both sides of the equation with respect to x

#18=(y-x)ln (xy)#

#d/dx(18)=d/dx((y-x)*ln (yx))#

#0=(y-x)*d/dx(ln (xy))+ln (xy)*d/dx(y-x)#

#0=(y-x)*(1/(xy))*d/dx(xy)+(ln (xy))(y'-1)#

#0=(y-x)*(xy'+y*1)/(xy)+y'ln(xy)-ln(xy)#

#0=(y-x)*((y')/y+1/x)+y'ln(xy)-ln(xy)#

#0=y'+y/x-(xy')/y-1+y'ln(xy)-ln(xy)#

Transpose the terms with y'

#(xy')/y-y'-y'ln(xy)=y/x-1-ln(xy)#

factor out the y'

#((x)/y-1-ln(xy))*y'=y/x-1-ln(xy)#

Divide both sides by #((x)/y-1-ln(xy))#

#(cancel((x)/y-1-ln(xy))*y')/cancel(((x)/y-1-ln(xy)))=(y/x-1-ln(xy))/((x)/y-1-ln(xy))#

#y'=(y/x-1-ln(xy))/((x)/y-1-ln(xy))#

God bless....I hope the explanation is useful.