How do you solve #3sin( 2 x ) +cos( 2 x ) = 0# from 0 to 2pi?

2 Answers
Apr 18, 2016

#S={1.4099,2.9807,4.5515,6.1223}#

Explanation:

Use the following formulas to Transform the Equation
#Acosx+Bsinx=C cos (x-D)#
#C=sqrt(A^2+B^2), cosD=A/C, sinD=B/C#

Note that cosine and sine are both positive which means quadrant one

#A=1, B=3, C=sqrt(1^2+3^2)=sqrt10#

#cos D=1/sqrt10->D=cos^-1(1/sqrt10)=1.249...#

#sqrt10 cos(2x-1.249....)=0#-> make sure to carry all the digits until the end then round

#cos(2x-1.249...)=0#

#2x-1.249...=cos^-1(0)#

#2x-1.249... = pi/2 +pin #

#2x=1.249+pi/2 +pin#

#2x=2.8198...+pin#

#x=1.4099...+pi/2 n#

#n=0, x=1.4099#

#n=1, x= 2.9807#

#n=2, x=4.5515#

#n=3, x=6.1223#

#n=4, x=7.6931>2pi# therefore we stop

#S={1.4099,2.9807,4.5515,6.1223}#

Apr 18, 2016

#-9^@22 (or 350^@78); 80^@79 ; 170^@79#

Explanation:

Divide both sides by 3.
#sin (2x) + (1/3)cos (2x) = 0#
Call #tan t = (sin t)/(cos t) = 1/3 # --> #t = 18^@43.#
The equation becomes:
#sin 2x .cos t + sin t.cos 2x = 0#
Apply the trig identity: sin (a + b) = sin a.cos b + sin b.cos a
#sin (2x + t) = 0 #
a. sin 2x + 18.43 = 0 --> 2x = - 18.43 --> #x = -9^@22#
#sin (2x + t) = pi = 180#. --> 2x = 180 - 18.43 = 161.57 --> #x = 80^@79#
#sin 2x + t = 2pi = 360# --> 2x = 360 - 18.43 = 341.57 -->
# x = 170^@79#
Answers for (0, 360)
Note that the co-terminal arc of (-9.22) is arc #(350^@78)#
#80^@79; 170^@79; 350^@78#
Check by calculator.
x = 80.79 --> 2x = 161.68 --> sin 2x = 0.32 --> 3sin 2x = 0.95.
cos 161/68 = - 0.95. Therefor: 0.95 - 0.95 = 0. OK