What is #int xsin(x/2-pi) #?
1 Answer
Explanation:
First, we can simplify
#sin(A-B)=sinAcosB-cosAsinB#
Thus,
#sin(x/2-pi)=sin(x/2)cos(pi)-cos(x/2)sin(pi)#
#=sin(x/2)(-1)-cos(x/2)(0)#
#=-sin(x/2)#
Thus the integral is slightly simplified to become
#=-intxsin(x/2)dx#
First, set
#=-2intxsin(x/2)(1/2)dx#
Substitute in
#=-2int2tsin(t)dt=-4inttsin(t)dt#
Here, use integration by parts, which takes the form
#intudv=uv-intvdu#
For
Hence,
#inttsin(t)dt=t(-cos(t))-int(-cos(t))dt#
#=-tcos(t)+sin(t)+C#
Multiply these both by
#-4inttsin(t)dt=4tcos(t)-4sin(t)+C#
Now, recall that
#intxsin(x/2-pi)dx=4(x/2)cos(x/2)-4sin(x/2)+C#
#=2xcos(x/2)-4sin(x/2)+C#