What is #int xsin(x/2-pi) #?

1 Answer
Apr 20, 2016

#2xcos(x/2)-4sin(x/2)+C#

Explanation:

First, we can simplify #sin(x/2-pi)# using the sine angle subtraction formula:

#sin(A-B)=sinAcosB-cosAsinB#

Thus,

#sin(x/2-pi)=sin(x/2)cos(pi)-cos(x/2)sin(pi)#

#=sin(x/2)(-1)-cos(x/2)(0)#

#=-sin(x/2)#

Thus the integral is slightly simplified to become

#=-intxsin(x/2)dx#

First, set #t=x/2#. This implies that #dt=1/2dx# and #x=2t#. We will want to multiply the interior of the integral by #1/2# so that we have #1/2dx=t# and balance this by multiplying the exterior by #2#.

#=-2intxsin(x/2)(1/2)dx#

Substitute in #x=2t#, #x/2=t#, and #1/2dx=dt#.

#=-2int2tsin(t)dt=-4inttsin(t)dt#

Here, use integration by parts, which takes the form

#intudv=uv-intvdu#

For #inttsin(t)dt#, set #u=t# and #dv=sin(t)dt#, which imply that #du=dt# and #v=-cos(t)#.

Hence,

#inttsin(t)dt=t(-cos(t))-int(-cos(t))dt#

#=-tcos(t)+sin(t)+C#

Multiply these both by #-4# to see that:

#-4inttsin(t)dt=4tcos(t)-4sin(t)+C#

Now, recall that #t=x/2#:

#intxsin(x/2-pi)dx=4(x/2)cos(x/2)-4sin(x/2)+C#

#=2xcos(x/2)-4sin(x/2)+C#