#color(red)("Note that I have shown how to deal with units")#
#color(green)("Tip:- leave the converting to decimal until the end")#
#color(blue)("Determine the distance of travel")#
Let distance be #d#
Let initial time be #t_0# seconds
Let time at any instant #i# be #t_i# seconds
Let final time be #t_F# seconds
Given: acceleration #-> 4/3color(white)(.)color(red)( m/s^2)#
Let point 1 be #P_1->(x_1,y_1,z_1)->(7,4,2)#
Let point 2 be #P_2->(x_2,y_2,z_2)->(3,1,9)#
Using Pythagoras
#d=sqrt((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2)#
#d=sqrt((3-7)^2+(1-4)^2+(9-2)^2)#
#d=sqrt(16+9+49)#
#d=sqrt(74)" "# metres#" "#(74 is a product of 2 primes)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine time of travel")#
Velocity at #t_0=0color(white)(.) m/s#
Velocity at #t_i = 4/3 xx t_i color(green)(" units"-> m/s^sxxs color(blue)(->mxxs/s^2=m/s))#
Mean velocity #1/2xx4/3xxt_F color(white)(.)color(blue)(m/s)#
Thus distance is mean velocity times time giving
#" "d=1/2xx4/3xxt_Fxxt_F #
#" "d= 4/6(t_F)^2 color(green)(" units"-> m/sxxs ->color(blue)(mxxs/s=m#
Multiply both sides by #6/4#
#" "d6/4=4/6xx6/4(t_F)^2#
But #4/6xx6/4=1#
#" "=>d6/4=(t_F)^2#
Thus
#" "t_F=sqrt(6/4)xxsqrt(sqrt(74))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider #sqrt(6/4) -> sqrt((6)/(2^2))=1/2sqrt(6)#
Consider #sqrt(sqrt(74)) -> root(4)(74)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("Putting it all together")#
#" "t_F=1/2sqrt(6)xxroot(4)(74)#
By calculator: #t_F ~~ 3.592" "# to 3 decimal places