How do you find the derivative of sqrt(1-2x)√1−2x?
2 Answers
Apr 28, 2016
dy/dx=(2x)/(2sqrt(1-2x)dydx=2x2√1−2x
Explanation:
Given -
y=sqrt(1-2x)y=√1−2x
dy/dx=(2x)/(2sqrt(1-2x)dydx=2x2√1−2x
Apr 28, 2016
Explanation:
differentiate using the
color(blue)" chain rule " chain rule
d/dx [f(g(x)) ] = f'(g(x)).g'(x)
"-----------------------------------------------" rewrite
sqrt(1-2x) = (1-2x)^(1/2) f(g(x)) =
(1-2x)^(1/2) rArr f'(g(x)) = 1/2(1-2x)^(-1/2) and g(x) = 1-2x → g'(x) = -2
rArr d/dx(sqrt(1-2x))=1/2(1-2x)^(-1/2).(-2)
= (-1)/(1-2x)^(1/2) = (-1)/(sqrt(1-2x))