How do you find the sum of the first 40 terms of the geometric sequence 2, 8, 32, 128?

1 Answer
May 2, 2016

The questions asked "how do you find.." In other words: it is not asking for the actual value!
#=>s=(2(4^40-1))/(4-1)#

Explanation:

I spot that:
#2xx4=8#
#8xx4=32#
#32xx4=128#

Also that
#2xx4^0=2#
#2xx4^1=8#
#2xx4^2=32#
#2xx4^3=128#

So this sequence is:#" "2xx4^(n-1)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~
Also
#1/2xx4^1=2#
#1/2xx4^2=8#
#1/2xx4^3=32#
#1/2xx4^4=128#

So this sequence is: #" "1/2xx4^n#
'~~~~~~~~~~~~~~~~~~~~~~~~
=>#1/2xxn^4=2xx4^(n-1)#
Multiply bot sides by 2
#=>2/2xxn^4=4xxn^3#
#=>n^4=n^4->" both are correct forms of the same thing!"#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Solving the question")#

#color(brown)("Considering a general case")#

Let the sum of a sequence be #s#
Let the sum be:#" "s=color(magenta)(ar^1)+ar^2+ar^3+...+ar^n#

so #" "sr= " "ar^2+ar^3+...+ar^ncolor(blue)(+ar^(n+1))#

#color(white)(.)#

Thus#" "sr -s= color(blue)(ar^(n+1))color(magenta)(-ar^1)#

#s(r-1)=ar(r^n-1)#

#s=(ar(r^n-1))/(r-1)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Let
#a=1/2#
#r=4#
#n=40#

#=>s=(2(4^40-1))/(4-1)#