How do you find the discriminant #x^2+x-12#?
1 Answer
May 3, 2016
49
Explanation:
Given a quadratic equation in standard form
#ax^2 +bx+c=0 # Then the discriminant
#color(red)(|bar(ul(color(white)(a/a)color(black)((Delta)=b^2-4ac)color(white)(a/a)|))) # The value of the discriminant gives information on the
#color(blue)" nature of the roots "#
#• b^2-4ac > 0 " roots are real and irrational "# However if
#b^2-4ac " is a square , roots are real and rational"#
#• b^2-4ac=0 " roots are real and equal "#
#• b^2-4ac < " roots are not real "# For the given function here
#x^2+x-12 , a=1,b=1,c=-12#
#rArr b^2-4ac=1^2-(4xx1xx-12)=49# Since
#b^2-4ac > 0 " and a square , roots will be real and rational"#