How do you prove # sec^2(csc^2) = sec^2 + csc^2#?
2 Answers
May 4, 2016
see below
Explanation:
Right Side:
May 4, 2016
Note the following identity:
#csc^2theta = 1 + cot^2theta#
So, let's see how that works out.
#\mathbf(sec^2theta(csc^2theta) = sec^2theta + csc^2theta)#
#sec^2theta(1 + cot^2theta) = sec^2theta + csc^2theta#
#sec^2theta + sec^2thetacot^2theta = sec^2theta + csc^2theta#
Lastly, use the identities
#cot^2theta = cos^2theta/sin^2theta,# #1/sin^2theta = csc^2theta,# #1/cos^2theta = sec^2theta,#
to get:
#sec^2theta + sec^2theta(cos^2theta/sin^2theta) = sec^2theta + csc^2theta#
#sec^2theta + 1/cancel(cos^2theta)(cancel(cos^2theta)/sin^2theta) = sec^2theta + csc^2theta#
#sec^2theta + 1/sin^2theta = sec^2theta + csc^2theta#
#color(blue)(sec^2theta + csc^2theta = sec^2theta + csc^2theta)#