How do you integrate #int (6-15x)/( (x-1) (x+2) (x-4))# using partial fractions?

1 Answer

#color(red)(int (6-15x)/((x-1)(x+2)(x-4)) dx=)#

#color(red)(ln(x-1)+2ln(x+2)-3ln(x-4)+C_0)#

Explanation:

from the given integral, set up the equation using the variables A, B, and C

#int (6-15x)/((x-1)(x+2)(x-4)) dx=int(A/(x-1)+B/(x+2)+C/(x-4))dx#

#(6-15x)/((x-1)(x+2)(x-4))=A/(x-1)+B/(x+2)+C/(x-4)#

#(6-15x)/((x-1)(x+2)(x-4))=(A(x^2-2x-8)+B(x^2-5x+4)+C(x^2+x-2))/((x-1)(x+2)(x-4))#

#(6-15x)/((x-1)(x+2)(x-4))#
#=((A+B+C)x^2+(-2A-5B+C)x^1+(-8A+4B-2C)x^0)/((x-1)(x+2)(x-4))#

The equations will be

#A+B+C=0#
#-2A-5B+C=-15#
#-8A+4B-2C=6#

Simultaneous solution results to:

#A=1# and #B=2# and #C=-3#

final answer

#color(red)(int (6-15x)/((x-1)(x+2)(x-4)) dx=)#

#color(red)(ln(x-1)+2ln(x+2)-3ln(x-4)+C_0)#

God bless....I hope the explanation is useful.