How do you decide whether the relation #f(x)= x/ [(x+2)(x-2)]# defines a function?
1 Answer
May 5, 2016
This formula does define a function since it defines a unique value for any
Explanation:
For any Real value of
#f(x) = x/((x+2)(x-2))#
uniquely defines a unique Real value.
When
So the given formula defines a function on the (implicit) domain:
#(-oo, -2) uu (-2, 2) uu (2, oo)#
The graph of
graph{x/((x+2)(x-2)) [-10, 10, -5, 5]}
Any vertical line only intersects