How do you evaluate #cos ((7pi)/12)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 10, 2016 #- sqrt(2 - sqrt3)/2# Explanation: Use the trig identity: #cos 2a = 2cos^2 a - 1# #cos 2a = cos ((14pi)/12) = cos ((7pi)/6) = cos (pi/6 + pi) = # #-cos (pi/6) = - sqrt3/2# #cos ((7pi)/6) = -sqrt3/2 = 2cos^2 ((7pi)/12) - 1# #2cos^2 ((7pi)/12) = 1 - sqrt3/2 = (2 - sqrt3)/2# #cos^2 ((7pi)/12) = (2 - sqrt3)/4# #cos ((7pi)/12) = +- sqrt(2 - sqrt3)/2# Since #(7pi)/12# is in Quadrant II, its cos is negative --> #cos ((7pi)/12) = - sqrt(2 - sqrt3)/2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 2987 views around the world You can reuse this answer Creative Commons License