How do you solve #3x^2+10x+2=0#?
1 Answer
May 12, 2016
Explanation:
One way involves completing the square. To avoid fractions a little, premultiply by
#a^2-b^2=(a-b)(a+b)#
with
#0 = 3(3x^2+10x+2)#
#=9x^2+30x+6#
#=(3x)^2+2(3x)(5)+6#
#=(3x+5)^2-25+6#
#=(3x+5)^2-19#
#=(3x+5)-(sqrt(19))^2#
#=((3x+5)-sqrt(19))((3x+5)+sqrt(19))#
#=(3x+5-sqrt(19))(3x+5+sqrt(19))#
#=9(x+5/3-sqrt(19)/3)(x+5/3+sqrt(19)/3)#
Hence:
#x = -5/3+-sqrt(19)/3#