What is the Cartesian form of #(1, (23pi)/8 ) #?

1 Answer

The Cartesian Form of #(1, (23pi)/8)# is
#(cos ((7pi)/8), sin ((7pi)/8))=(-0.9238795325, 0.3826834324)#

Explanation:

The solution

from the given: Polar coordinates #(1, (23pi)/8)#

Let #r=1# and #theta=(23pi)/8#
#x=r cos theta# and #y=r sin theta#

Let us solve for #x#

#x=r cos theta#
#x=(1)cos ((23pi)/8)#
#x=(1)cos ((16pi)/8+(7pi)/8)#
#x=(1)cos (2pi+(7pi)/8)#
use the sum formula #cos (A+B)=cos A*cos B- sin A* sin B#
#x=(1)[cos (2pi)*cos((7pi)/8)-sin (2pi)*sin((7pi)/8)]#
#x=(1)[1*cos((7pi)/8)-0*sin((7pi)/8)]#

#x=(1)cos((7pi)/8)#

#x=cos((7pi)/8)=-0.9238795325#

Let us solve for #y#

#y=r sin theta#
#y=(1)sin ((23pi)/8)#
#y=(1)sin ((16pi)/8+(7pi)/8)#
#y=(1)sin (2pi+(7pi)/8)#
use the sum formula #sin (A+B)=sin A*cos B+ cos A*sin B#
#y=(1)[sin (2pi)*cos((7pi)/8)+cos (2pi)*sin((7pi)/8)]#
#y=(1)[0*cos((7pi)/8)+1*sin((7pi)/8)]#

#x=(1)*sin((7pi)/8)#

#x=sin((7pi)/8)=0.3826834324#

God bless....I hope the explanation is useful.