How do you show #arctan (x) ± arctan (y) = arctan [(x ± y) / (1 ± xy)] #?
1 Answer
May 25, 2016
First, we should state the tangent addition formula:
#tan(alpha+-beta)=(tan(alpha)+-tan(beta))/(1∓tan(alpha)tan(beta))#
Rearrange by taking the arctangent of both sides:
#alpha+-beta=arctan((tan(alpha)+-tan(beta))/(1∓tan(alpha)tan(beta)))#
Now, let:
#alpha=arctan(x)" "=>" "x=tan(alpha)# #beta=arctan(y)" "=>" "y=tan(beta)#
Make the substitutions into the tangent formula:
#arctan(x)+-arctan(y)=arctan((x+-y)/(1∓xy))#
So, your identity is a little bit off since the minus-plus sign (
#{(arctan(x)+arctan(y)=arctan((x+y)/(1-xy))),(arctan(x)-arctan(y)=arctan((x-y)/(1+xy))):}#