If#""f^2(x)+g^2(x)+h^2(x)<=9# and #u_x=3f(x)+4g(x)+10h(x)#, again #(u_x)_"max"=sqrtn,"where"" "ninN# then what is the value of n?

2 Answers
Jun 1, 2016

#n = 1125#

Explanation:

Let #vec v = {f(x),g(x),h(x)}# and #vec v_0 = {3,4,10}#
calling #u_x = << vec v,vec v_0 >>#, #u_x# will attain maximum value when #vec v = lambda vec v_0#, remembering that #norm(vec v) le 9# and that #u_x# is a linear function, it's maximum will be achieved at the frontier, when #norm vec v = 3#.

Putting all together

# << vec v,vec v_0 >>/(norm(vec v)norm(vec v_0))=1#
#sqrt(n)/(3 sqrt(3^2+4^2+10^2)) = 1#

Solving for #n# gives #n = 1125#
and #lambda = 3/(5 sqrt(5))#
with #vec v_{max} = {9/(5 sqrt[5]), 12/(5 sqrt[5]), 6/sqrt[5]}#

Jun 1, 2016

Alternative

Explanation:

For those who know less

Given
#u_x=3f(x)+4g(x)+10h(x)#

Squaring both sides we get

#u_x^2=9f^2(x)+16g^2(x)+100h^2(x)+2*3*4f(x)g(x)+2*4*10g(x)h(x)+2*10*3h(x)f(x)..........(1)#

Now we know for real values

#a^2+b^2>=2ab# Applying this relation we can have the following relations

  • #2*3*4f(x)g(x)<=16f^2(x)+9g^2(x).....(2)#

  • #2*4*10g(x)h(x)<=16h^2(x)+100g^2(x).......(3)#

  • #2*10*3h(x)f(x)<=100f^2(x)+9h^2(x)......(4)#

Combining equations (1),(2),(3)& (4) we get

#u_x^2<=9f^2(x)+16g^2(x)+100h^2(x)+16f^2(x)+9g^2(x).+16h^2(x)+100g^2(x)+100f^2(x)+9h^2(x)#

#u_x^2<=125f^2(x)+125g^2(x)+125h^2(x)#

#u_x^2<=125[f^2(x)+g^2(x)+h^2(x)]#

#u_x^2<=125xx9##" ""since" [f^2(x)+g^2(x)+h^2(x)<=9]#

#=>u_x^2<=1125#

#:.(u_x)_"max"=sqrt1125#

Again given

#(u_x)_"max"=sqrtn#

Hence #n =1125#