How do you use the quotient rule to differentiate #y= (x^2+4x)/(x+2)^2#?
1 Answer
Jun 3, 2016
Explanation:
differentiate using the
#color(blue)"quotient rule"#
#f(x)=(g(x))/(h(x))" then "f'(x)=(h(x).g'(x)-g(x)h'(x))/(h(x))^2#
#"---------------------------------------------------------------------"#
#g(x)=x^2+4xrArrg'(x)=2x+4#
Substitute these values into f'(x)
#f'(x)=((x+2)^2(2x+4)-(x^2+4x)2(x+2))/((x+2)^4#
#=((x+2)[(x+2)(2x+4)-2(x^2+4x)])/(x+2)^4#
#=(cancel((x+2))[2x^2+4x+4x+8-2x^2-8x])/(cancel((x+2))(x+2)^3#
#=8/(x+2)^3#