How do you prove: #sin^2x/(1-cosx) = 1+cosx#?
1 Answer
Modifying just the left-hand side:
We can use the Pythagorean Identity to rewrite
#color(red)(barul|color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|)#
Which can be rearranged to say that
#color(teal)(barul|color(white)(a/a)color(black)(sin^2x=1-cos^2x)color(white)(a/a)|)#
Thus, we see that
#sin^2x/(1-cosx)=(1-cos^2x)/(1-cosx)#
We can now factor the numerator of this fraction.
#color(blue)(barul|color(white)(a/a)color(black)(a^2-b^2=(a+b)(a-b))color(white)(a/a)|)#
This can be applied to
#color(orange)(barul|color(white)(a/a)color(black)(1-cos^2x=1^2-(cosx)^2=(1+cosx)(1-cosx))color(white)(a/a)|)#
Therefore,
#(1-cos^2x)/(1-cosx)=((1+cosx)(1-cosx))/(1-cosx)#
Since there is
#((1+cosx)(1-cosx))/(1-cosx)=((1+cosx)color(red)(cancel(color(black)((1-cosx)))))/(color(red)(cancel(color(black)((1-cosx)))))=1+cosx#
This is what we initially set out to prove.