How do you differentiate #s(x)=log_3(x^2+5x)#?
1 Answer
Jun 14, 2016
Explanation:
We can rewrite
#log_a(b)=log_c(b)/log_c(a)#
Here, we will choose a base of
#s(x)=ln(x^2+5x)/ln(3)#
When differentiating this, note that
To find the derivative of
Since
Thus:
#s^'(x)=1/ln(3)*1/(x^2+5x)*d/dx(x^2+5x)#
#s^'(x)=(2x+5)/((x^2+5x)ln(3))#