How do you differentiate #y= sqrt(1+x^2)#?

1 Answer
Jun 17, 2016

#x/(sqrt(1+x^2))#

Explanation:

Rewrite y as

#y=sqrt(1+x^2)=(1+x^2)^(1/2)#

differentiate using the #color(blue)"chain rule"#

#d/dx(f(g(x)))=f'(g(x)).g'(x)....................(A)#
#"--------------------------------------------------------"#

#f(g(x))=(1+x^2)^(1/2)rArrf'(g(x))=1/2(1+x^2)^(-1/2)#

#g(x)=1+x^2rArrg'(x)=2x#
#"------------------------------------------------------"#
Substitute these values in (A)

#1/2(1+x^2)^(-1/2).2x=x(1+x^2)^(-1/2)#

#rArrdy/dx=x/(1+x^2)^(1/2)=x/(sqrt(1+x^2)#