How do I find the derivative of #ln(e^(4x)+3x)#?

1 Answer
Jun 21, 2016

#(f(g(x)))'=(4e^(4x)+3)/(e^(4x)+3x)#

Explanation:

We can find the derivative of this function using chain rule that says:

#color(blue)((f(g(x)))'=f'(g(x))*g'(x))#

Let us decompose the given function into two functions #f(x)# and #g(x)# and find their derivatives as follows:

#g(x)=e^(4x)+3x#
#f(x)=ln(x)#

Let's find the derivative of #g(x)#
Knowing the derivative of exponential that says:
#(e^(u(x)))'=(u(x))'*e^(u(x))#
So,
#(e^(4x))'=(4x)'*e^(4x)=4e^(4x)#
Then ,
#color(blue)(g'(x)=4e^(4x)+3)#

Now Lets find #f'(x)#

#f'(x)=1/x#
According to the property above we have to find #f'(g(x))# so let's substitute #x# by #g(x)# in #f'(x)# we have:

#f'(g(x))=1/g(x)#
#color(blue)(f'(g(x))=1/(e^(4x)+3x))#
Therefore,
#(f(g(x)))'=(1/(e^(4x)+3x))*(4e^(4x)+3)#

#color(blue)((f(g(x)))'=(4e^(4x)+3)/(e^(4x)+3x))#