How do you integrate #1/[s^2(3s+5)]# using partial fractions?
1 Answer
Jun 25, 2016
Split apart the fraction using typical decomposition rules:
#1/(s^2(3s+5))=A/s+B/s^2+C/(3s+5)#
Multiply through by
#1=As(3s+5)+B(3s+5)+Cs^2#
Let
#1=5B#
#B=1/5#
Let
#1=C(-5/3)^2=C(25/9)#
#C=9/25#
Arbitrarily let
#1=A(5)(3*5+5)+1/5(3*5+5)+9/25(5)^2#
#1=A(100)+4+9#
#-12=100A#
#A=-3/25#
Thus:
#1/(s^2(3s+5))=-3/(25s)+1/(5s^2)+9/(25(3s+5))#
So:
#int1/(s^2(3s+5))ds=-3/25int1/sds+1/5ints^-2ds+9/25int1/(3s+5)ds#
Using typical integration rules (don't forget to substitute in the final integral):
#=-3/25ln(abss)-1/(5s)+3/25ln(abs(3s+5))+C#